人教版初二数学《与三角形有关的角》教案设计
教学内容:与三角形有关的角
教学目标:
1、知识与技能:
(1)掌握三角形内角和定理证明及其简单应用;
(2)掌握三角形的外角的定义、三角形外角性质定理及其推论的证明和灵活运用。
2、过程与方法:通过动手操作探索三角形三个内角的和,运用三角形内角和定理解决实际问题;探究三角形外角的性质定理,能够运用三角形的外角性质定理解决实际问题;经历小组协作讨论,进一步发展合作交流的能力和数学表达能力。
3、情感、态度与价值观:养成独立观察思考的习惯,感受数学学习中转化的巧妙。
教学重点:
(1)三角形内角和定理;
(2)三角形的外角的定义,三角形外角的性质定理及其推论。
教学难点:
(1)三角形内角和定理的证明;
(2)三角形外角性质定理和推论及其应用。
教学方法:引导发现法、尝试探究法。
教学过程:
一、创设情境,导入新课:
前面我们学习了三角形的边,今天这节课我们将学习与三角形有关的角。 我们已经知道,任意一个三角形的三个内角和等于180°。虽然度量的方法可以验证一些具体的三角形的内角和等于180°,但是形状不同的三角形有无数个,我们不可能用度量的方法一一验证。接下来我们将一起探索并证明三角形的三个内角和是180°。
二、合作交流,解读探究:
1、拼图实验:
(1)教师展示图(1)的拼法,并利用此拼图证明三角形内角和定理。
(2)分析拼图:在图(1)中,由内错角相等可得,移动后∠B的一条边平行于边BC;同理,移动后∠C的一条边平行于边BC。由“经过直线外一点,有且只有一条直线与这条直线平行”可得,移动后∠B的一条边和移动后∠C的一条边在同一条直线上,并且这条直线平行于边BC。
(3)提问:通过上面的分析,你能想出证明“三角形内角和等于180°”的方法吗?
由上面的分析,启发学生过△ABC的顶点A作直线?∥BC,即可实现“角的拼合”,再利用平行线的性质与平角的定义进行证明。
(4)指导学生写出已知、求证、证明过程,规范证明格式。
已知:如图,△ABC 求证:∠A+∠B+∠C=180° 证明:过A点作直线DE∥BC ∵DE∥BC
∴∠DAB=∠B,∠EAC=∠C(两直线平行,内错角相等) ∵∠DAB+∠BAC+∠EAC=180°(平角的定义) ∴∠BAC+∠B+∠C=180°(等量代换)
应指出辅助线通常画为虚线,并在证明前交代说明。
(5)每个学生把课前准备好的三角形纸片的两个内角剪下,和第三个内角拼在一起。
让学生展示自己的拼法。
(6)学生口述利用图(2)证明的过程。
已知:如图,△ABC 求证:∠A+∠B+∠C=180°
证明:作BC的延长线CD,过点C作射线CE∥BA ∵CE∥BA
∴∠B=∠ECD(两直线平行,同位角相等) ∠A=∠ACE(两直线平行,内错角相等) ∵∠BCA+∠ACE+∠ECD=180°(平角的定义) ∴∠A+∠B+∠ACB=180°(等量代换)
C
D
C
D
A
E
2、小结证明思路:通过作平行线“搬两个角”,运用平行线的性质和平角的定义证明。
3、发散思考:在证明三角形内角和定理时,可以“搬两个角”来说理。如果只“搬一个角”行吗? “搬三个角”呢?这个问题留给同学们在课后研讨。
4、三角形内角和定理:三角形内角和等于180°。
5、巩固练习:
说出下列图形中∠1的度数:
(2)
6、外角:
(1)定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
如图,∠ACD是△ABC的一个外角。
问题:①一个三角形一共有几个外角?
②判断下面图形中∠1是不是三角形的外角?
(2)性质定理及其推论:
(1)
B
(2)
推导:由∠A+∠B+∠ACB=180°,可得∠ACB=180°-∠A-∠B 由∠ACB+∠ACD=180°,可得∠ACD=180°-∠ACB
所以 ∠ACD=180°-∠ACB=180°-(180°-∠A-∠B)=∠A+∠B 性质定理:三角形的一个外角等于与它不相邻的两个内角的和。 推论:三角形的'一个外角大于与它不相邻的任何一个内角。 (3)巩固练习:说出下列图形中∠1和∠2的度数:
D
北
(2)
(1)
三、应用举例:
例1 如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西40°方向。从C岛看A,B两岛的视角∠ACB是多少度?
解:由题意可知 ∠1=50°,∠1+∠2=80°,∠4=40°
所以 ∠2=30°
由AD∥BE,可得∠1 +∠2+∠3+∠4=180°。
所以∠3=180°-∠1-∠2-∠4=180°-50°-30°-40°=60°
在⊿ABC中,∠ACB=180°-∠2-∠3=180°-60°-30 °=90° 答:从C岛看A,B两岛的视角∠ACB是90°。 提问:你还能想出其他的解法吗?其他解题思路:
(1)如图1,过点C作AD的垂线,交直线AD于点M,交直线BE于点N。 (2)如图2,过点C作CF∥AD。
图1
北
F
D
北例2 如图,∠BAE,∠CBF,∠ACD是△ABC的三个外角,它们的和是多少?
解:如图,因为∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,
(三角形的一个外角等于和它不相邻的两个内角的和) 所以∠BAE +∠CBF+∠ACD=2(∠1+∠2+∠3), 因为 ∠1+∠2+∠3=180°,
所以 ∠BAE +∠CBF+∠ACD=360°。
提问:你还能想出其他的解法吗?(利用平角的定义) 归纳结论:三角形的外角和等于360°。
四、课堂小结:通过本节课的学习,你有哪些收获?
五、布置作业:1、必做题:教材P76 习题7.2 第1、4、7题。 2、选做题:
(1)已知:P是△ABC内一点。
求证:∠BPC>∠BAC
(2)已知:在△ABC中,AD是BC边上的高,E
是AC边上一点,BE与AD交于点F,∠ABC=45°,∠BAC=75°,∠AFB=120°。
求证:BE⊥AC
B
文档为doc格式